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The boundary-layer flow over a circular cylinder a t  a Reynolds number of 
1.06 x lo5 has been studied both experimentally and theoretically. The investi- 
gation was designed to  concentrate on the self-induced oscillations occurring in 
the flow; at this Reynolds number, these oscillations have generally been 
ignored heretofore. In  the experimental part of the investigation both the 
inviscid flow and boundary-layer flow reversals were measured as functions of 
time. The theoretical part of the study started with the measured inviscid flow 
and calculated all the boundary-layer characteristics. The boundary-layer 
calculations themselves revealed some very interesting fine-scale structure of 
the flow, which strongly indicated that the vanishing of wall shear does not 
signal the onset of separation for unsteady flow. In  general, the agreement 
between the theoretical calculations and the experimental results was excellent 
and the unsteady component of this supposedly steady flow was found to be 
very significant. 

1. Introduction 
The flow over a circular cylinder has served as a reference problem for many 

investigations during the development of fluid mechanics over the years and 
the characteristics of this flow have been well documented over a large range of 
Reynolds numbers (Achenbach 1968; Morkovin 1964). However, there are 
regimes of Reynolds number, even for this flow, where our knowledge is very 
meagre. In  the present investigation the self-induced oscillations in the flow 
over a circular cylinder at Re = 1.06 x 105 have been studied up to the point of 
‘separation’ (the oscillations are caused by a periodic shedding of vorticity in 
the wake). The study contains experimental measurements of the details of the 
flow and theoretical calculations of the boundary-layer structure. The experi- 
mental part of the investigation consisted of measuring the time-dependent 
inviscid flow, stagnation-point motion and the location of zero wall shear stress. 
For the theoretical part of the study a time-dependent numerical calculation 
has been carried out. This calculation was performed in a moving co-ordinate 
system and exhibited some interesting double zeros of the wall shear stress. 
The agreement between theory and experiment was very good and showed that 
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the unsteady part of the flow was significant. (The agreement with the mean 
measurements of Achenbach was also very good.) 

The present investigation did not study the flow after the laminar flow 
reversal point and was restricted mainly to the boundary layer, rather than the 
unsteady wake flow. It is hoped that this study will provide some information 
on unsteady incompressible boundary layers which will be useful for unsteady 
flow over oscillating airfoils, and similar problems with unsteady separation. 

2. Experimental arrangements and measurements 
A cylinder 4 in. in diameter and 7 ft long was mounted in the 7 x 10 ft test- 

section wind tunnel of the U.S. Army Air Mobility Research and Development 
Laboratory. The free-stream velocity was 50 ft/s and the Reynolds number for 
the air flow over the cylinder was Re = 1.06 x 105. At this Reynolds number 
separation was unsteady and laminar; however, for Re > 3.5 x lo5 turbulent 
reattachment occurred after a relatively steady laminar separation bubble, and 
the self-induced oscillations decreased considerably. The experiments were 
confined to the former Reynolds number, since the harmonic content of the 
time-dependent measurements was confined to a single harmonic, within 5 %, 
as will be seen from the following results. The instrumentation used to measure 
the inviscid flow and boundary-layer characteristics consisted of the following: 
(i) static pressure taps, for mean pressure; (ii) heated-film skin-friction gauges, 
for measuring the variation of the wall shear (McCroskey & Durbin 1972); (iii) 
a hot-wire probe mounted on slender needles that protruded 0-050in. above 
the cylinder wall, to measure the variation of the inviscid flow velocity just 
outside the boundary layer; (iv) a pair of hot wires 0.020 in. above the cylinder 
surface, one in the wake of the other, used to detect flow reversal (this corres- 
ponds to a relative boundary-layer location y/6 N 0.4); and (v) another hot-wire 
probe placed a in. above the cylinder at  90" away from the geometric stagnation 
point, t o  provide a reference in time, or phase throughout the oscillation, for 
the cylinder-mounted sensors. Figure 1 illustrates the approximate location of 
all the probes on the cylinder and it can be seen that they are mounted approxi- 
mately at the mid-span location. Laterally displaced static pressure taps all 
indicated the same pressure distributions, and in the view of this and the large 
aspect ratio of the cylinder (E/d = 21)) the flow was considered to be two- 
dimensional. The cylinder was mounted so that it could be rotated in 1" incre- 
ments and data recorded as function of time at each angular position. 

Before going on to discuss the theoretical calculations, it is convenient first 
to present the results of the measurements, since they did serve as very useful 
input to the analysis. The first measurements that were performed consisted of 
obtaining a measure of the time-averaged 'separation' line through the use of 
surface oil flow. The oil flow showed that a mean flow reversal occurred at  an 
angular position of 78 k I", and this agrees with other measurements of this 
type a t  the same Reynolds number (Achenbach 1968). The oil-flow measure- 
ments were carried out all along the span of the cylinder with the same accuracy 
as mentioned previously. 
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FIUURE I.  Experimental apparatus and instrumentation. 

The majority of the measurements are contained in figures 2 and 3. The hot- 
wire measurements showed the inviscid flow around the cylinder to vary sinu- 
soidually about a mean distribution that agreed well with Achenbach’s measure- 
ments. At the particular Reynolds number of 1.06 x lo5 harmonics higher than 
the fundamental were indiscernible (less than 5 yo) and the phase of the motion 
was independent of the angular position 8.  In  other words, the velocity distri- 
bution followed a two-term Fourier series 

ue/Uao = ~,,+U,sin(ot+n) (o = 176rad/s), 

where U, and U, are the free-stream velocity and local edge velocity, respectively, 
and o,, and U, are the local time-average and fluctuating velocities, which are 
strong functions of 8. Therefore, the values of go and U, were easily determined 
at  each angular position from the maximum and minimum values on the oscillo- 
graph traces of U,. The results, which were the basis of the boundary-layer 
calculations, are shown in figure 3. 

The stagnation-point motion was detected by the dynamic response of the 
heated-film skin-friction gauges, which exhibited a strong double peak whenever 
the stagnation point passed over a gauge twice during a cycle. As the cylinder 
was rotated slowly, the appearance or disappearance of this strong harmonic 
content marked the limit of the stagnation-point excursion, f 3.7’. This value 
agrees cloiiely with the amplitude given by the hot-wire fluctuation, see figure 2. 

48-2 
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FIGURE 2. Experimental measurements of inviscid flow, flow reversal and zero wall shear 
stress. O0 = 3.1 sin wt, UJU, = Uo+ U, sin wt, U, = 50 ftls, Re = 1-06 x lo5, wRIU, = 0.59. 
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FIGURE 3. Angular distribution of mean and fluctuating components 
of the inviscid flow. 

The stagnation-point motion 8, = 3.7 sin wt is sizable and would surely have 
been given more study in the past if the frequency of the motion were lower. 
This motion poses a very interesting boundary-layer problem, since a boundary- 
layer investigation starts at  the point of attachment of the fluid particles to the 
body. The problems that the stagnation-point motion cause in the boundary- 
layer analysis will be discussed in the next section. 
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Downstream of the stagnation-point region, the heated-film skin-friction 
gauge also was used to give the relative variation in the wall shear up to the 
point of separation, where an abrupt change in the dynamic response of the 
gauge occurred. Since the separation point moved on the cylinder during each 
cycle but the gauge remained at  a fixed location, two important boundaries 
could be established by slowly rotating the cylinder. The first was an ‘onset ’ or 
minimum value of 0, x 7 5 O ,  where separation first appeared for a brief instant 
but the flow remained attached during the rest of the cycle. The second was the 
‘final ’ or maximum value of 3, E 8 5 O ,  beyond which the flow was always sepa- 
rated. These results are identified in figure 2 by the symbol 7,+0. 

To confirm these measurements further, the double hot-wire probe, mounted 
slightly above the wall, was used to investigate whether flow reversal had 
occurred in the vicinity of the zero-shear-stress location. The location of the 
flow reversal from the double probe is shown in figure 2 by the marks associated 
with U, = 0-020+0. For the minimum value of zero-wall-shear location flow 
reversal occurred at essentially the same place, thus indicating a sharp b r e a k  
away of the boundary layer from the wall. The maximum location of zero wall 
shear had a flow reversal further downstream, and this may indicate a less 
sharp breakaway of the boundary layer from the body. Since the flow reversal 
probe was located at  an approximate position y/6 = 0.4 in the boundary layer 
right before flow reversal, this measurement actually indicates that a large por- 
tion of the boundary layer had gone through a flow reversal. As will be shown 
later in the paper, the boundary-layer calculations were carried out only up to 
this reversal point, except for the very interesting double flow reversal region 
that occurred in the calculations. 

In  the present paper no serious attempt will be made to define separation for 
unsteady boundary layers. The reason why this point was not given more study 
was that the probes developed only measured wall quantities and that the 
numerical calculations could only predict the flow in non-reversed regions. 
Therefore, all the results presented are focused on the position of zero wall 
shear stress, although it is known that this is not the true separation location. 
However, both experiments and the calculations indicate that separation is 
closely related to zero wall shear stress for most of the oscillation cycle. A more 
detailed discussion of this problem will be given in § 4, and can also be found in 
the paper by Dwyer & McCroskey (1971), where similar problems were faced 
for unsteady airfoil flows. 

As can be seen from the measurements given above, the mean picture pre- 
sented by oil flow or other time-averaged techniques misses a large amount of 
very interesting phenomena for $he flow over a cyIinder ati this Reynolds number. 
Of course, the present measurements do not give a complete picture of this flow, 
since they neglect the wake region; however, they do give a detailed picture of 
the boundary layer. In  the next section, a boundary-layer study will be carried 
out to test our ability to calculate boundary-layer flow in this situation. 
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3. Boundary-layer analysis 
The boundary-layer analysis consisted of two parts: (i) the development of a 

calculation method for the flow in the vicinity of the moving stagnation points; 
and (ii) the development of numerical methods for the calculationof the boundary- 
layer flow in the vicinity of flow reversal. A possibly very difficult third part 
was eliminated by the use of the measured inviscid flow as a boundary condition 
for our calculation. 

The .first major innovation developed was the use of a moving co-ordinate 
system attiached to the stagnation point. Since the stagnation point is accelera- 
ting, additional inertial terms must beadded to theequations of motion. However, 
6he co-ordinate system is a very natural one, since the flow atkaches and develops 
from bhe stagnation poinb, and because the boundary-layer equations take on 
an interesting form in terms of relative velocities. 

Equation 1 is the boundary-layer equation for an accelerating non-rotating 
moving co-ordinate system. (The terms associated with the rotation of the co- 
ordinates are small compared with $he co-ordinate-system acceleration or are 
themselves perpendicular to the boundary-layer flow.) 

where u, is the relative velocity, y the boundary-layer co-ordinate, X ,  the 
relative distance from the stagnation point and a, the sbagnation-point accelera- 
tion. The pressure-gradient term in the equation represents the actual pressure 
force on a fluid element; however, if the expression for the pressure gradient 
from the inviscid flow is used, 

then ( 1 )  takes the following form: 

This equation is interesting since the inertial term resulting from the acceleration 
of the co-ordinate system does not appear explicitly. It should also be remembered 
that the expression 

does not represent the pressure-gradient force on a fluid element. For the cal- 
culations that were carried out in the present paper, (3) was used. 

If (3) is employed, the boundary conditions for the problem have to be changed. 
The outer boundary condition or inviscid flow condition becomes 

au,pt + u,au,lax, 

uR+Ufi=U,-U, as y-+00, 

where V, is the velocity of the stagnation point. For the wall boundary condibion 
the stationary wall is replaced by a moving one, and the wall condition becomes 

u,= -U, at y = O .  
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Therefore, in the present problem an observer in the moving co-ordinate system 
will see the wall oscillating with a sinusoidal motion. 

The next problem to discuss is the stagnation-point conditions or the initial 
conditions for the boundary layer and this problem is best studied in terms of 
the transformed co-ordinates 6 , ~  and r, where 

5 = XR, 7 = y(u~/zVx~)', 7 = t .  

In terms of the transformed co-ordinate system, the equations of continuity and 
momentum become 

respectively, where the following definitions have been employed: 

The above transformations and equations do not strictly hold at  xR = 0, since 
U, =l 0; however, a short distance away from x, = 0 (3-5") the experimental 
measurements of the inviscid flow indicated that a useful approximation could 
be made. In this region the first term on the right side of (5) is significantly 
larger than the second and Pz z 1. If this is true, then (4) and (5) take on a form 
similar to that used by Rott (1956) for a stagnation-point flow with an oscillating 
wall. Therefore, the initial conditions at this point can be approximated by 
Rotts' solution at  a short distance away from xE = 0. Physically, .Dhe approxi- 
mation is equivalent to having bhe flow dominated by the spatial acceleration 
away from the moving stagnation point. (Ideally, one would like to have an 
exact solution like the Rotti or stagnation-point solutions starting a t  xR = 0. 
However, in the present problem an exact initial condition does not seem to be 
available unless the full time-dependent Navier-Stokes equations are employed, 
and this does not seem necessary here.) 

The solutions calculated by Rott are not really suitable for use with numerical 
procedures, since they are not extensive enough for all reduced frequencies 
k = @/a (see Rott's equation). Therefore, exact, numerical solutions were ob- 
tained for the equations developed by Rott, and these were used in the present 
investigation. Rott's solutions are suitable for small and large values of k, but 
can be inaccurate for intermediabe ranges. Table 1 gives some tabulated values 
for the real and imaginary parts of the oscillating solution as a function of 7 for 
intermediate values of k. Also given in table 1 are values of the wall derivatives 
as a function of lc (we should like t o  thank Mr Allan Goldman for his help in ob- 
taining these solutions). 

After the determination of a set of initial conditions the numerical solubion of 
(4) and (5) must be tackled. The numerical problem is considerably simplified in 
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k = 1.0 k = 2.0 
7 7-i- ----L 

r 
0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.4 
2.8 
3.2 
4.0 
5.0 
6.0 

k 

0.1 
0.2 
0.5 
1.0 
2.0 
.5.0 

10.0 

gi 

- 0.07446 
-0.11640 
- 0'13350 
- 0.13290 
-0.12100 
-0.10310 
- 0.083 16 
- 0.06388 
- 0.04692 
- 0.03303 
- 0.01451 
- 0'00544 
- 0.00175 
-0~00011 

0 

0 
0 

d w  
- 0.049305 
- 0.098426 
- 0'24292 
- 0.46619 
- 0.82713 
- 0.5001 
- 2'1938 

gr 
1.0 
0.8229 
0.6566 
0.5085 
0.3821 
0.2785 
0.1968 
0.1347 
0.08927 
0.05721 
0.03542 
0.01219 
0.00361 
0~00091 
0.00003 
0 
0 

d w  
- 0.81226 
-0.81509 
- 0.83429 
- 0'89594 
- 1.0748 
- 1.5974 
- 2.2414 

gi 

- 0.12832 
- 0.19424 
- 0.21493 
- 0.20582 
-0.17969 
- 0.14629 
- 1.11234 
- 0.08191 
- 0.05691 
- 0.03778 
- 0'01458 
- 0.00473 
- 0.00129 
- 0.00005 

0 

0 
0 

gr 
1.0 
0.78848 
0.59466 
0.42890 
0.29529 
0.19334 
0.11967 
0.06932 
0.03693 
0.01747 
0.00670 

- 0.00085 
- 0.00135 
- 0.00068 
- 0.00006 
0 
0 

the transformed co-ordinates, since the edge of the boundary layer is usually 
located a t  values of 7 between 3 and 6, and the derivatives off' with respeot to 
5 are reduced. This allows the edge of the boundary layer to be determined for 
practical purposes a priori and for relatively large A[ steps 00 be taken. The 
numerical method used to integrate the equations was developed by Dwyer 
(Dwyer & McCroskey 1971; Dwyer 1972) and consists of an implicit scheme. 
The equations are evaluated a t  an unknown grid station and backward differences 
are taken for the r and [ co-ordinates. The 7 derivatives are evaluated at  the 
unknown station in central-difference form. The resulting set of simultaneous 
difference equations is solved by use of the Thomas algorithm, since the un- 
knowns appear in a tri-diagonal matrix form (Richtmyer & Morton 1967). 
This scheme is fast and very stable although the truncation error is only of 
order /At\ and lA[l for the backward differences. 

The mosb interesting feature of the above scheme is that it 'allows' some 
reversed flow (negative ux) to be calculated. The scheme will remain stable if 
the total time-like finite-difference operator 

l /At  + u,/Ax 
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FIGURE 4. Comparison of measured and theoretical zero-shear-stress distributions. - - - -, 
Achenbaoh average zero-shear-stress position ; - , time-dependent zero shear stress 
(calculated) ; -- -, time-dependent zero-shear-stress limits (measured) ; - -, secon- 
dary zero-shear-stress line (calculated). 

is positive. In practice this allows for small regions of not too large negative uR 
to be calculated. However, since this involves calculating into the history of the 
flow, the interprebation of these solutions should be cautious; It should be 
mentioned at this time that the step sizes, Ax and At, in the x, and t directions 
were always chosen so that convection of vorticity did not proceed downstream 
a t  an unphysical rate (that is Ax/At < UB). In  the calculations to be presented 
in the next section some very interesting regions of reversed flow were found. 

4. Results 
The numerical calculations were carried out with the inviscid flow measured 

and the equations developed in the previous sections. For the initial conditions 
a value of reduced frequency k of 0.32 was found to correspond to the conditions 
at the stagnation point, and the solution to Rott's equations was used 3' away 
from xR = 0. Since the Rott solution was not exact, some small oscillations 
occurred for the first few steps; however, the step size was kept small. After two 
or three steps of approximately lo, the numerical solution quickly settled down 
and remained smooth throughout the calculation. Some of the major results of 
the calculations are shown in figure 4. In  this figure the measured stagnation- 
point motion, time-dependent zero-shear-stress limits and time-averaged 
'separation ' point are given along with the calculated time-dependent zero- 
shear-stress line. 
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The agreement between the measured limits of zero wall shear stress and the 
calculated values is very good, the calculations giving slightly larger limits. 
However, the agreement is within experimental error and it must be concluded 
that the calculation procedure works quite well. The calculations also show a 
zero-shear-stress line that oscillates around the measured value of Achenbach's 
'separation' point and it must be concluded that 'separation' for this Reynolds 
number is much more complicated than was previously thought. Another in- 
teresting facet of the calculated zero-shear-stress point is that its position is 
almost 180" out of phase with the stagnation-point motion. If the calculation 
were quasi-steady it might be expected that the distance between the stagnation 
point and the zero-shear-stress line may be constant and its motion in phase 
with the stagnation point. In  the present calculations the angular distance 
between the stagnation point and zero-shear-stress location varies from approxi- 
mately 70" to 90" and in time is 180" out of phase with the stagnation-point 
motion. Since the experiments were not designed to measure the time-dependent 
mobion of the zero-shear-stress line, this result has been solely predicted by 
theory and has not yet been verified experimentally. However, if the measured 
expressions for the stagnation-point motion and the velocity field are compared, 

x, = C, sin wt, 

UJUoo = Q,, + U, sin (wt + n), 
it is easily seen that they are 180" out of phase. 

Figure 4 also contains more very interesting information, and this is associated 
with the curve labelled 'secondary zero-shear-stress limit '. This curve depicts 
a boundary-layer phenomenon which seems to  be new and is caused by the wall 
shear stress being first positive then negative, then positive for a short distance, 
then negative very strongly. The region of the time cycle where this occurs in 
figure 4 is between 0" and 90" and the phenomenon can be explained clearly 
with the use of figure 5 .  In  figure 5, and also figures 6 and 7, a normalized skin- 
friction parameter CT, and also px and ,&!, is plotted as a function of angular 
position and time, where 

The skin-friction parameter CF is given by the following expression: 

where P C - -  - ipu: 

and (af '/ay), is the derivative off' with respect t o  y at a steady stagnation point. 
The deviation of Cf* from one in the vicinity of the stagnation point is a measure 
of the unsteadiness of the flow (note that all velocities in Cf* are absolute veloci- 
ties). The spatial derivatives contained in ,5, were calculated numerically from 
the results in figure 3. The values of px can be quite varied, since the magnitude 
and sign of U, vary sinusoidually and /3, depends directly on the time-dependent 
relative velocity U, ( = U, - q). The most interesting variations in 1% occurred 
near the stagnation point and separation point. 
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FIGURE 5. Angular distribution of wall-shear-stress and pressure-gradient parameters. 
(a) 7 = 0. ( b )  7 = +7T. (c) 7 = I%... 

Plots for three dimensionless times in a cycle are shown in figure 5 and they 
correspond to the part of the time cycle between 0" and 90". At r = 0 the double 
flow reversal has not occurred. However, a sign of its coming can be seen by 
observing the /33c curve, which shows a relative increase after a minimum (from 
(4) and (5) it can be seen that and bF are the main parameters which determine 
the effects of the time-dependent pressure gradient). At  7 = gn, the double 
zero-shear-stress phenomenon has appeared and is confined to a small region. 
For the dimensionless time T = &n the region between the double zero-shear- 
stress locations is significanO and occupies almost 15" along the cylinder. The 
curve for /3, at this time becomes strongly negative around 65Ofrom the geometric 
stagnation point and then begins to increase. Then /3% reaches a relative maximum 
before the second zero-shear-stress location and decreases again. From bhe 
results of the calculations it can be seen that when 16, increases after a minimum 
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FIGURE 6. Angular distribution of wall-shear-stress and pressure-gradient parameters. 
(a )  7 = *T, ( b )  7 = &n, (C) 7 = 7T. 

the velocity gradient becomes positive. This is a very interesting phenomenon 
since ,13, is always negative during the reversal, and the values of ,I3, are large 
enough that similarity theory would have predicted a strong flow reversal. 
However, it should be remembered that this boundary layer is time dependent 
and that the momentum loss due to increased wall shear has not had time to 
influence the outer regions of the boundary layer. When p, increases relatively, 
the outer regions of the flow seem to be capable of transferring enough momen- 
tum for the wall shear to again become positive. This phenomenon of the double 
flow reversal seems to be new, and exhibits a new richness in possible flow fields. 

are shown in 
figures 8(a) and (b ) .  In figure ~ ( c c ) ,  it is seen that the velocity profiles begin to 
become retarded as the first shear reversal is approached, much as in steady 
flow. At an angular position of 7 8 O ,  shown in figure 8(b) ,  the velocity profile 
exhibits a region of reversed flow. When the flow reaches 82" the region of 
reversed flow has disappeared; however, it is obvious from figure 8(b)  that the 
boundary layer as a whole has less momentum. At 88" the waII velocities have 

The velocity profiles at  various angular locations for 7 = 
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Angular position, 0 

FIGURE 7. Angular distribution of wall-shear-stress and pressure-gradient parameters. 
(a) 7 = ti, ( b )  7 = +%. 

become very large and negative. The adjustment and transfer of momentum 
in the boundary layer is certainly subtle and rather complex. 

The solutions obtained in the first reversed flow region were convergent and 
the method was very stable. The reason why this behaviour was obtained is 
directly due to keeping the total time-like finite-difference operator positive, 

llht + u,/Ax b 0. 

Also, it can be concluded that the fist zero-shear-stress location does not signify 
separation and that the vanishing of the wall shear is an inadequate description 
in this time-dependent flow. However, the second zero-shear-stress point seems 
to have the wall shear decreasing much more rapidly and may be very close to 
a point of breakaway of the fluid from the body. It should be mentioned that Che 
numerical methods become highly unstable immediately after the second zero- 
shear-stress location and there does not seem to be any hope of using these 
methods to proceed further downstream. 

Further plots for the skin-friction parameter 0; can be found in figures 6 
and 7 for the other parts of the time cycle. In  general it can be said that these 
curves have a nature very similar to that for steady flow over a circular cylinder, 
although the separation point is shifted. At no point in the rest of the cycle 
does a double zero-shear-stress location occur, and all of the curves indicate that 
the wall shear becomes strongly negative. For dimensionless times between m 
and 27r the location of zero wall shear is considerably farther away from the 
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I 

FIGURE 8. Velocity profiles (a )  before and ( b )  in the flow reversed region. 

geometric and actual stagnation points than would be indicated by the mean oil 
flow studies. The double flow reversal results do not contradict the visual 
observations of Mattingly (1963), which indicated that a drastic breaking away 
of the fluid occurs for both the forward and rear location of the flow reversal. 
As can be seen from figure 4 both the minimum and the maximum points of 
flow reversal given by the calculations were of the drastic type, and not like the 
double flow reversal. To obtain an experimental verification of the region of 
double flow reversal simultaneous measurements of wall shear would have to 
be carried out with many probes. 

A study of all the p? curves in figures 5-7 indicates that the time-dependent 
part of the pressure gradient plays a minor role over most of the cylinder except 
at the stagnation point. A very short distance after the stagnation point the 
influence of /3, is much greater than that of p$ and the flow is dominated by 
spatial gradients. For frequencies larger than the ones encountered in the 
present problem, however, the time-dependent part of the pressure gradient 
would be more important over a greater spatial distance. In  this case new re- 
search will be required to handle the flow theoretically. 

It should also be mentioned that both positive and negative wall velocities 
were encountered in the calculation procedure owing to the moving co-ordinate 
system. The negative velocities might be expected to cause difficulties in the 
calculation procedure owing to its reversed flow nature. No difficulties were 
encountered, however, as the time operator was kept positive and also because 
of the small values of the wall velocity itself. 
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5. Discussion 
The flow over a circular cylinder has again exhibited a very rich collection of 

flow phenomena, which for the Reynolds number of the present investigation 
consisted of considerable oscillations in the flow. Although these oscillations are 
due to an interaction between the wake and the inviscid flow, the use of the 
boundary-layer approximation is valid before ‘separation ’. The only region 
where the boundary-layer approximation may break down is near the stagna- 
tion point and even here many of the terms in the full equations will be very 
small. If a complete numerical simulation of this problem were to be attempted, 
the main difficulty on the forward portion of the cylinder would be in the deter- 
mination of the inviscid flow interaction with the wake, and not the interaction 
between the boundary layer and the inviscid flow. 

A part of the investigation that should be viewed cautiously is the calculations 
which were carried out in the reversed flow region. The use of boundary-layer 
equations, initial-value equations, to calculate a region of reversed flow is 
always questionable, since it requires one to march into the history of the 
problem. However, it seems that some problems are dominated by local pressure 
gradients and boundary conditions and that inertial and viscous history are not 
very important. In  these circumstances the use of the time-dependent boundary- 
layer equations to calculate small regions of reversed flow gives good agreement 
with experimental results. The present problem is an example of this situation. 

R E F E R E N C E S  

ACHENBACH, E. 1968 J .  Fluid Mech. 34, 625-639. 
DWYER, H. A. 1972 A.I.A.A. Paper, no. 72-109. 
DWYER, H. A. & MCCROSKXY, W. J. 1971 A.I.A.A. J. 9, 1498-1505. 
MCCROSKEY, J. W. & DURBIN, E. J. 1972 A.S.M.E., J .  Basic Eng. D 94, 46-52. 
MATTINGLY, G .  1963 Private film, Princeton University, New Jersey. 
MORKOVIN, M. V. 1964 A.X.M.E. Symp. Fully Sepurated Flows, New York,  pp. 102-118. 
RICHTMYER, R. D. & MORTON, K. W. 1967 Difference Methods for  Initial Value Problems. 

ROTT, N. 1956 Quart. AppZ. Math. 13, 444-451. 
Wiley. 




